Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
نویسندگان
چکیده
Classification of panchromatic high-resolution data from urban areas using morphological and neural approaches is investigated. The proposed approach is based on three steps. First, the composition of geodesic opening and closing operations of different sizes is used in order to build a differential morphological profile that records image structural information. Although, the original panchromatic image only has one data channel, the use of the composition operations will give many additional channels, which may contain redundancies. Therefore, feature extraction or feature selection is applied in the second step. Both discriminant analysis feature extraction and decision boundary feature extraction are investigated in the second step along with a simple feature selection based on picking the largest indexes of the differential morphological profiles. Third, a neural network is used to classify the features from the second step. The proposed approach is applied in experiments on high-resolution Indian Remote Sensing 1C (IRS-1C) and IKONOS remote sensing data from urban areas. In experiments, the proposed method performs well in terms of classification accuracies. It is seen that relatively few features are needed to achieve the same classification accuracies as in the original feature space.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملRandom-forest-ensemble-based Classification of High-resolution Remote Sensing Images and Ndsm over Urban Areas
As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملUrban Area Extraction by Regional and Line Segment Feature Fusion and Urban Morphology Analysis
Urban areas are a complex combination of various land-cover types, and show a variety of land-use structures and spatial layouts. Furthermore, the spectral similarity between built-up areas and bare land is a great challenge when using high spatial resolution remote sensing images to map urban areas, especially for images obtained in dry and cold seasons or high-latitude regions. In this study,...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003